Rapid response of vegetation biodiversity and composition to experimental application of historical management and nitrogen deposition in temperate oak forests

Karol Ujházy, Mariana Ujházyová, František Máliš, Marek Čiliak, Erika Gömöryová **France 2021**

HEF, Metz,

Recent changes of temperate oak-forest communities

Factors and drivers affecting recent forest comunities

- global climatic changes
- nitrogen depositions (Bobbink et al. 2010, ...)
- abandonment of historical management (Szabó 2010, Vild et al. 2018, Máliš et al. 2021)

Effects on plant-species composition and diversity

- termophilization (De Frenne et al. 2013, Zellweger et al. 2020, Feeley et al. 2020)
- eutrophication (De Schrijver et al. 2011, Verheyen et al. 2012, Dirnböck et al. 2014)
- biotic homogenization (Velend et al. 2007, Keith et al. 2009, Kopecký et al. 2013, Hermy 2017)

most affected are oak forests of planar and colline zones

Interactions of main drivers in temperate Europe

Historical legacies x Recent factors

Trad. manag. Cattle grazing Air pollution Soil degradation Modern forestry Game grazing Climate change Nitrogen depositions

Is it possible to disentagle causes and effects?

70 combinations of 4 interacting factors of 8 considered ... ③

Resurvey studies – indirect evidence

- vegetation resampling
 - permanent and semi-permanent plots
 - forestREplot group (Verheyen et al. 2017)
- species richness change depends on historical forest management type (Perring et al. 2018)
- disturbances accelerates thermophilization of understory plant communities (Stevens et al. 2015)
- interactions of past land use and recent forest management influenced composition of forest understorey (Depauw et al. 2019)

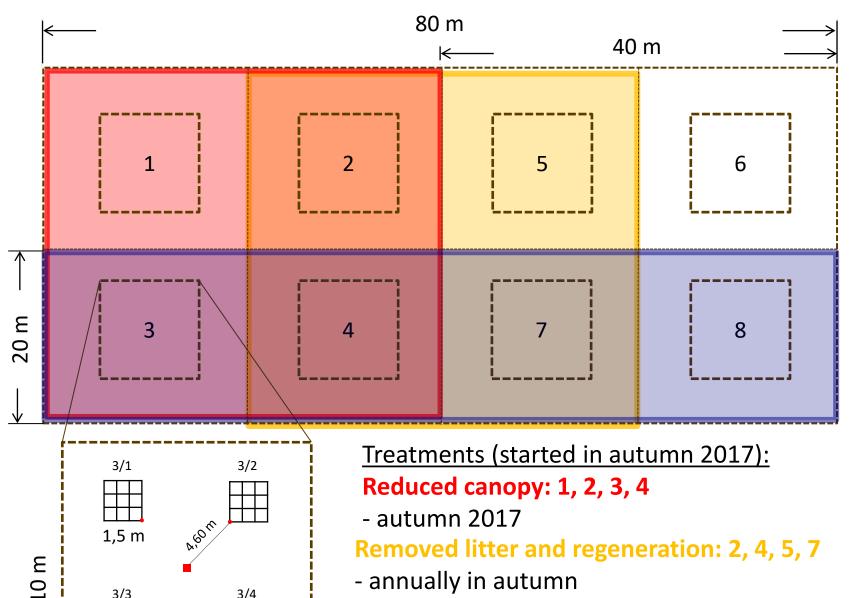
Field experiment — combitation of three treatments

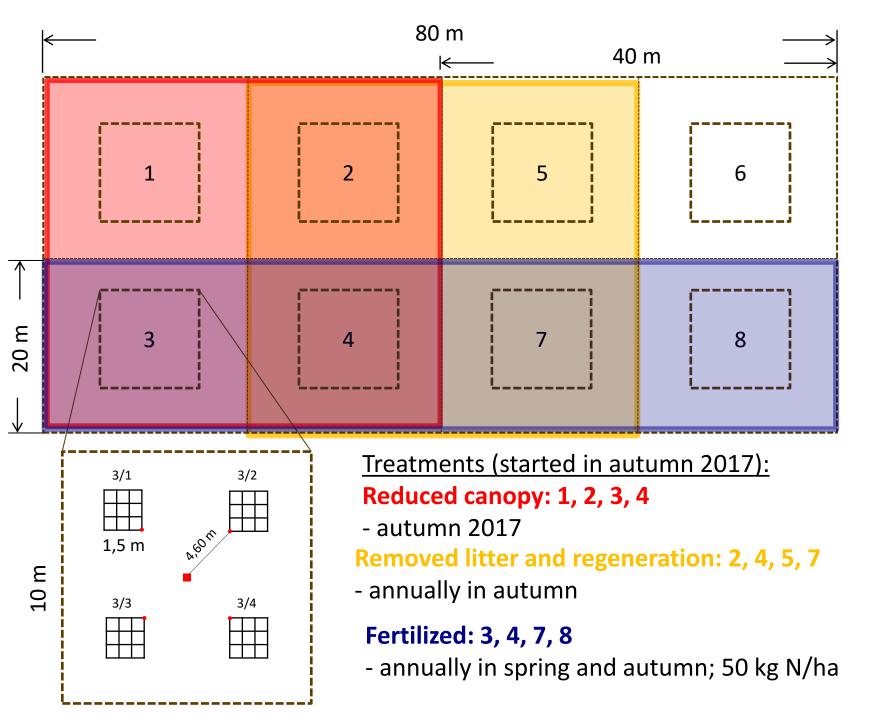
Direct evidence is needed Field experiment can be a solution!

Aims of our study:

simulation of historical management and recent anthropogenous nitrogen depositions

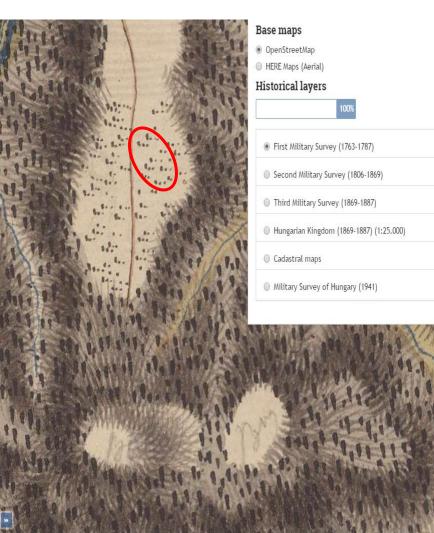
8 combinations of three treatments: canopy reduction litter raking nitrogen fertilisation

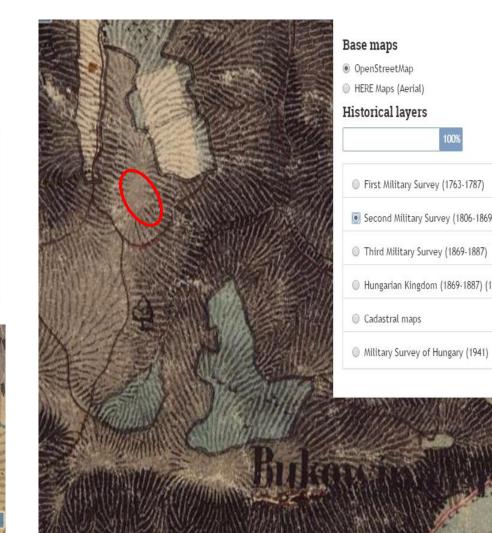

studying response of understorey plants


Field experiment — combitation of three treatments

- oak-hornbeam forests (Carpinion alliance)
- Central Slovakia, Western Carpathians

 forest enterprise of Technical university in Zvolen
- volcanic bedrock (andesites), moderately acidic cambisols (topsoil pH H₂O 4.3 – 5.8)
- altitudes about 500 m a.s.l., SW-W slopes up to 20°,
- precipitation XXX, annual temperatures XXX


Field experiment – combitation of three treatments



Historical management of oak forests in the region

coppicing, cattle grazing, litter raking

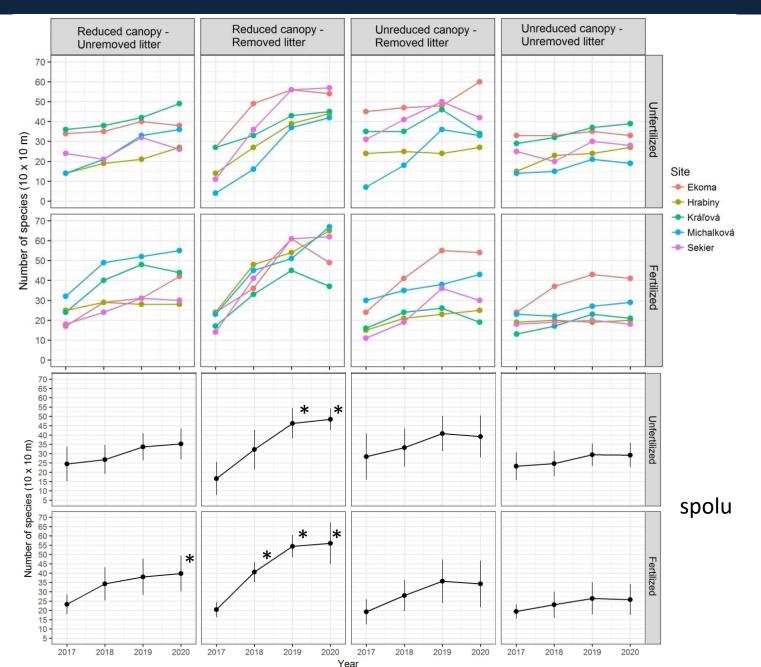
Succession in tree layer: Quercus petraea - Carpinus betulus - Fagus sylvatica

Mesophilisation, homogenisation and diversity decrease in herb layer

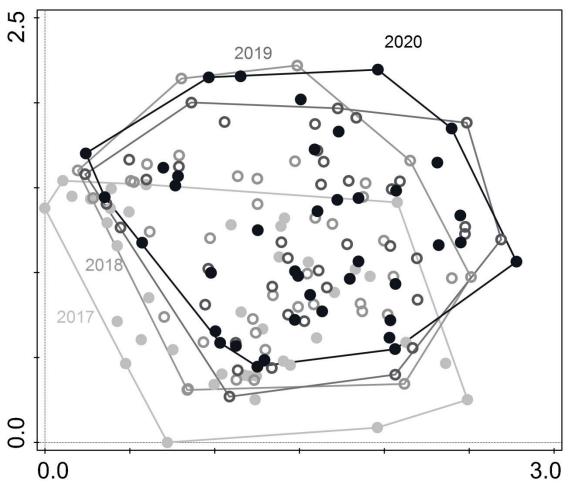

1st sampling in summer 2017 treatments from autumn 2017

Aims & Hypotheses

Increase of diversity?

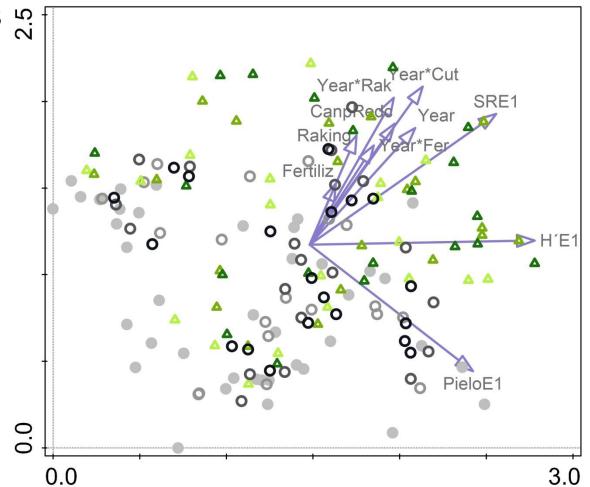

Canopy reduction (- 30 %): reduction of shade-casting trees Reversing mesophilisation? Thermophilisation? Come-back of nemoral species?

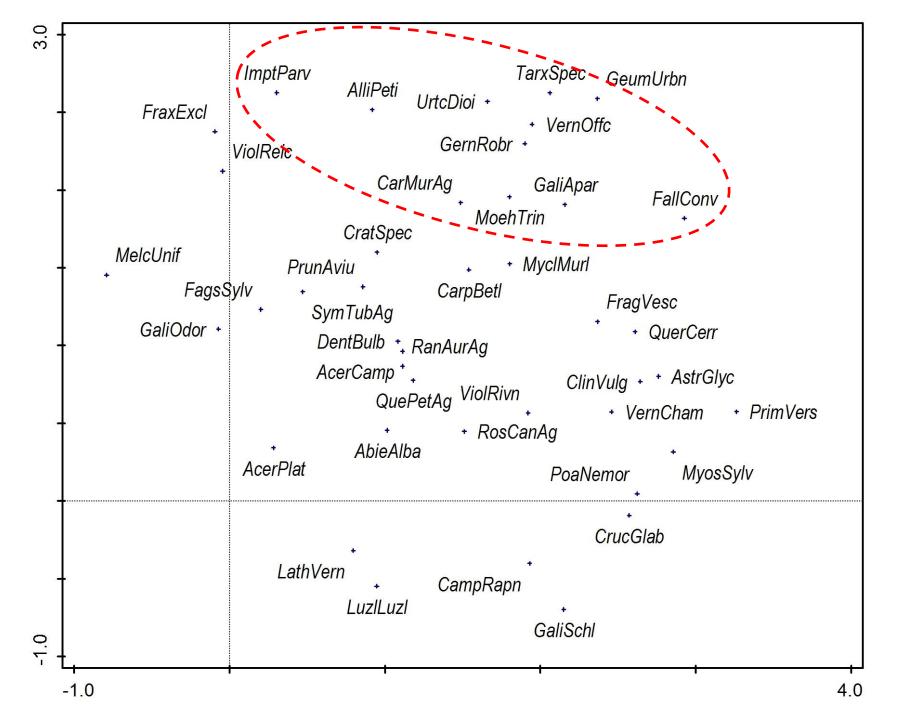
> N – fertilization (50 kg N/ha/year): anthropogenous N depositions Eutrophication? Diversity decrease?


Results – changes in species richness

Changes in species composition

Annual shifts according to DCA ordination


- understorey species
- 100 m2
- log. transformation



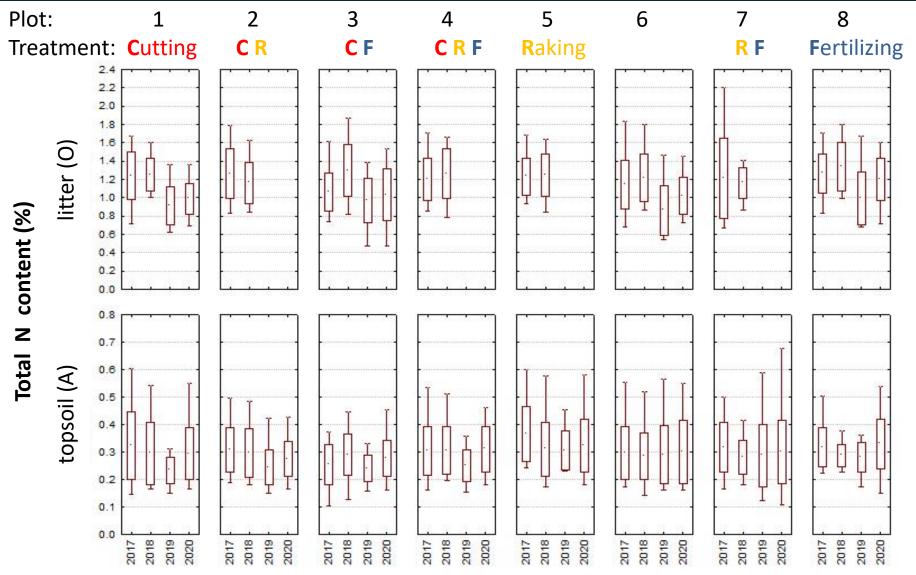
Changes in species composition

Shifts in raked plots

- understorey species بې
- 100 m2
- log. transformation

Species colonizing raked plots

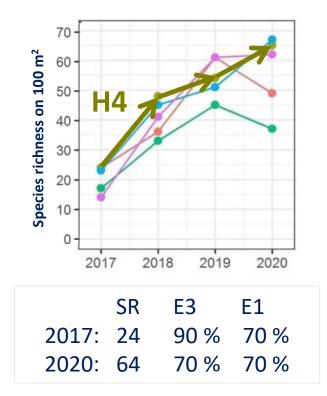
Synoptic table with percentage frequency and fidelity (phi coefficient *100) shown for species with significantly higher frequency in year (Fisher's test, $p \le 0.01$)


Year	2017	2018	2019	2020	E_{\cdot}	IV
No. of relevés	20	20	20	20	L	N
Rapid colonists						
Sonchus species		35 ^{39,5}	15			
Linaria vulgaris		15 ^{36,6}			8	5
Erechtites hieraciifolius		45 ^{27,4}	35	15		
Urtica dioica	10	75 ^{31,1}	80 35.0	45	Х	9
Moehringia trinervia	20	100 21.1	100 ^{21.1}	95	4	7
Fallopia convolvulus	15	50	65	50	7	6
Lactuca serriola		30	40 34.4	10	9	4
Chenopodium species		40	50 ^{31.3}	40		
Senecio sylvaticus		30	65 ^{49.9}	30	8	8
Daucus carota		5	20 ^{36.7}		8	4
Epilobium angustifolium		5	30 32.3	15	8	8
Sambucus nigra		5	30 32.3	10	7	9
Cirsium vulgare		• • • • • • • • • • • • • • • • • • • •	25 ^{29.3}	10	8	8
Geranium robertianum	15	40	75 28.7	55	5	7
Geum urbanum	15	30	55 ^{23.3}	50	4	7
Taraxacum species		55	80 ^{39.0}	70 ^{30.9}	7	8
Gradual colonists						
Veronica officinalis	10	25	80 31.4	90 ^{39.2}	6	4
Myosotis sylvatica	20	40	60 ^{21.6}	65 ^{25.6}	6	7
Erigeron annuus		10	30	45 ^{40.4}	7	8
Calamagrostis epigejos		• • • • • • • • • • • • • • • • • • • •	20	25 ^{29.3}	7	6
Torilis japonica	5	15	50	65 ^{34.1}	6	8
Mycelis muralis	40	55	70	80 26.6	4	6
Hypericum perforatum		5	35	55 ^{36,2}	7	4
Lotus corniculatus		• • • • • • • • • • • • • • • • • • • •	15	25 ^{27.1}	7	3
Ajuga genevensis		• • • • • • •	15	35 27.0	8	2
Carex muricata agg.	10	25	40	60 ^{26.1}	7	6
Astragalus glycyphyllos	15	55	60	75 25.4	6	3
Lathyrus niger	10	5	20	35 24.5	5	3
Veronica chamaedrys	55	65	85	95 ^{20.6}	6	х

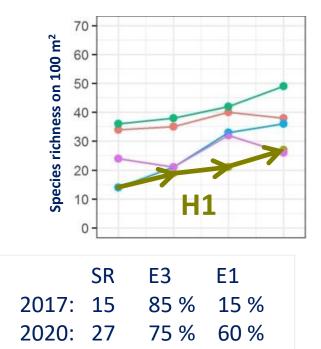
Constant understorey species poorly affected by raking

Synoptic table with % frequency (F) and average % non-zero cover (AC) of constant species without significant frequency change in raked plots

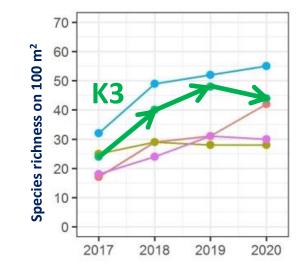
	Year	20	017	20	018	20	19	20)20	E_{\perp}	IV
	No. of relevés		20		20		20		20	L	N
		F	AC	F	AC	F	AC	F	AC		
	Constant species										
	Dentaria bulbifera	100	2.8	100	4.0	100	2.8	100	4.5	3	6
	Quercus petraea agg.	70	2.0	80	1.9	90	1.7	100	1.9	6	Х
+	Carpinus betulus	70	1.4	100	4.5	90	2.5	95	2.6	4	Х
-	Galium odoratum	85	10.1	90	10.8	95	6.3	85	4.8	2	5
	Fagus sylvatica	85	2.9	80	2.5	65	2.0	70	2.1	3	Х
+	Poa nemoralis	50	3.6	70	3.7	85	4.9	75	6.7	5	4
	Prunus avium	65	1.5	80	1.4	70	1.3	90	1.5	4	5
+	Symphytum tuberosum agg.	35	1.4	70	1.9	65	2.1	70	2.0	4	5
	Acer campestre	55	1.6	55	1.5	55	1.3	55	1.5	5	6
	Cruciata glabra	55	2.4	50	2.4	55	2.4	65	2.6	7	5
-	Melica uniflora	55	10.4	50	8.8	55	7.5	55	6.5	3	6
	Campanula rapunculoides	40	1.4	40	2.4	50	2.3	45	1.9	6	4
	Crataegus species	45	1.4	50	1.7	60	1.4	55	1.5	6	5
	Ranunculus auricomus agg.	35	1.3	55	1.4	60	1.2	55	1.8	5	Х
+	Clinopodium vulgare	35	1.4	40	1.9	65	1.8	65	2.2	7	3
	Fraxinus excelsior	50	1.7	40	1.9	45	1.8	45	1.6	4	7
+	Galium aparine	25	1.4	35	1.6	60	2.2	70	1.8	7	8
	Viola riviniana	35	1.7	60	1.8	60	1.7	50	2.3	5	Х
	Galium schultesii	40	2.6	35	2.0	45	1.9	50	1.8	5	4
	Luzula luzuloides	30	1.8	30	2.0	35	2.0	35	2.4	4	4
	Alliaria petiolata	35	1.9	35	2.3	60	2.5	55	2.0	5	9
	Viola reichenbachiana	35	1.7	30	2.0	50	2.5	35	2.1	4	6
	Quercus cerris	25	1.6	45	1.4	40	1.1	40	1.4	6	Х
	Lathyrus vernus	35	2.0	35	2.3	35	1.7	35	1.9	4	4
+	Primula veris	35	1.6	25	1.6	50	1.7	45	2.0	7	3
	Fragaria vesca	25	1.8	30	1.7	50	1.5	50	1.7	7	6
	Impatiens parviflora	20	1.8	35	1.9	35	2.7	40	1.8	4	6


Nitrogen content in soil and litter – no relation to treatments

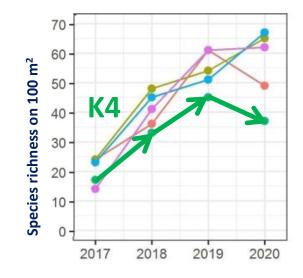
Year



H4 - raked, cutted, fertilized



H1 - cutted


K3 - cutted, fertilized

	SR	E3	E1
2017:	24	65 %	30 %
2020:	44	60 %	60 %

K4 - cutted, raked, fertilized

	SR	E3	E1
2017:	17	60 %	17 %
2020:	37	50 %	60 %

original tussocks of Poa nemoralis

2019

-

juveniles of *Poa nemoralis* on raked + cutted plot

the state of the s

2019

juveniles of Fallopia convolvulus

the strongest understorey changes in plots affected by all treatments

2020

poor understorey response in raked plot without removal of Carpinus betulus

Conclusions after the 4th year

- rapid understorey response to treatments especially to canopy reduction (and removal of shade casting species)
 - fertilizing was the less affecting treatment
 - increases effect of the other treatments
- significant effect on species composition, cover and diversity
 - dispersal of ruderals and annual species in 2018
 - rapid increase of species richness with culminatiion in 2019 in some plots

Conclusions after the 4th year

- target perenial nemoral species show increasing trend especially in raked and cutted plots
 - max. frequency in 2020
 - Poa nemoralis, Veronica chamaedrys, Astragalus glyciphyllos, Lathyrus niger etc.
- some nitrophilous and invasive species positively responded as well
 - Impatiens parviflora, Erigeron annuus, Fallopia convolvulus, Moehringia trinervia
- among forest shade tolerant generalists Galium odoratum was negatively affected
- nitrogen addition was not detected by analyses of totan N content neither in litter nor in topsoil layer

Thank You for attention!

C BUIL